
Michael Leonhard’s Resume
michael206@gmail.com 415.361.1808 linkedin.com/in/mleonhard San Francisco, CA

Applin www.applin.dev, Founder, 2023 November - Present
Applin lets a single backend developer build a mobile app without writing frontend code. It’s a
server-driven UI (SDUI). Airbnb and other large companies use internal SDUIs for competitive
advantage. Applin lets companies of all sizes use server-driven UI to build apps faster and with
smaller teams.

● iOS frontend in native Swift and UIKit: github.com/leonhard-llc/applin-ios
● Ruby on Rails backend: github.com/leonhard-llc/applin-rails
● Rust backend: github.com/leonhard-llc/applin-rust
● Documentation: www.applin.dev/docs/
● Try it now on iOS: apps.apple.com/us/app/applin-tester/id6464230000

FOSS contributions, GitHub, Automated Tests, Documentation

● temp-dir and temp-file - Rust libraries to help tests clean up their files. 1.5M downloads.

● safe-regex - A Rust regular expression library. It compiles regular expressions to Rust
code, which is then compiled and optimized as part of your program. 500k downloads.

● servlin - A modular HTTP server library in Rust. Uses async internally for excellent
performance under load. Unique feature: ergonomic threaded (non-async) request
handlers.

● safina - A Rust async runtime with forbid(unsafe_code)

● dns-server - A threaded DNS server library in Rust

● cloudping.info - Measure latency from your browser to various cloud datacenters

● See others at github.com/mleonhard and on my website www.tamale.net

Flexport, Senior Software Engineer, 2022 July - 2023 Oct (1yr 3mo)
I worked on Flexport’s web app for customers. My team owns the Reports and Analytics
portions of the app. Customers can view standard reports, build custom reports with 5 data
grains and 200+ columns, and schedule automated emails with CSV attachments. The product
is built with React, Flow, Relay, GraphQL, Ruby on Rails, PostgreSQL RDS, Debezium, Kafka,
Looker API, Snowflake, dbt, AWS, and Terraform. I joined the team in the middle of a multi-year
product rewrite. What I did:

● Coded features, fixed bugs, and wrote automated tests.
● Wrote documentation of our system’s technical architecture. Five new team members

used this documentation to quickly learn our system.
● Closed 87 tickets, authored 90 PRs, reviewed 104 PRs, and onboarded a teammate.

mailto:michael206@gmail.com
tel:+14153611808
https://www.linkedin.com/in/mleonhard
http://www.applin.dev
https://github.com/leonhard-llc/applin-ios
https://github.com/leonhard-llc/applin-rails
https://github.com/leonhard-llc/applin-rust
https://www.applin.dev/docs/
https://apps.apple.com/us/app/applin-tester/id6464230000
https://crates.io/crates/temp-dir
https://crates.io/crates/temp-file
https://crates.io/crates/safe-regex
https://crates.io/crates/servlin
https://crates.io/crates/safina
https://crates.io/crates/dns-server
https://www.cloudping.info/
https://github.com/mleonhard
https://www.tamale.net


● Participated in the oncall rotation.
● Participated in diagnosing and resolving 7 production incidents. Wrote incident reports.

During one large outage, I provided critical knowledge of CORS and how to fix the root
problem.

● Identified several important risks in the new system: a security vulnerability, disaster
recovery, developing in production, and a few others. We addressed all of them.

● Built Datadog dashboards for the various parts of our system. Cleaned up how the code
generates metrics and spans: filled gaps, removed duplicate and obsolete parts, and
enabled spans from worker threads. The new dashboards have been crucial sources of
information during several production incidents. They have also guided us in our work on
improving page load times.

● The new version of our product had a problem that was causing page timeouts for some
customers. I refactored a sizable portion of our product’s backend and solved the
performance issue. The refactoring has unblocked work on some long-standing bugs.
The new version follows industry best practices: DRY, YAGNI, KISS, OOP, static types,
and testing. My teammates like working with the new code.

● Wrote detailed proposals for new features, improving product quality, and increasing
developer velocity. Reviewed proposals from junior teammates and coached them in
design doc writing.

● Studied our system’s data store (Snowflake), built a query latency dashboard, and
investigated ways to reduce query processing times. Consulted our Snowflake account
manager and support engineers.

● Identified the gap in our team’s software process that was preventing the new version
from achieving the same level of data quality as the legacy version: missing tests.

○ Wrote a proposal for automated integration tests.
○ Created a manual test procedure. It has prevented many production incidents.
○ Proposed that we build a "CSV Diff" tool to compare the output of old and new

code. We built this tool and used it to identify discrepancies between the reports.
● Dug deep into the latency of some slow SQL queries to PostgreSQL. I checked index

usage with EXPLAIN ANALYZE, measured cache effectiveness, studied Amazon EBS
and how RDS uses it, and analyzed our EBS metrics. I wrote a detailed proposal for
specific changes to the Postgres and EBS configs. The infrastructure team has
implemented some of them, leading to faster query times.

● Flexport’s web apps and API break about once a week. I identified a gap in the
company’s software engineering process that is letting these problems reach production:
CICD without the CI. I did these things to improve the situation:

○ Lobbied management to invest in integration testing
○ Organized a cross-functional group on integration testing, with points of contact

on each engineering team in our division.
○ Built our first Datadog synthetic browser checks to monitor our production

deployment and quickly alert us to problems. Wrote a doc with best-practices and
necessary info that is missing from Datadog’s docs. Already, one other team has
used this doc and built checks for their customer-facing pages.



Cozy Date App, Founder, 2018-2021 (3yr)
● Interviewed hundreds of dating app users and identified key pain points
● Wrote strategies to reduce user pain and enhance positive user experiences
● Studied UX design, wrote user personas, made user flow diagrams, designed the app UI
● Implemented iOS & Android apps in Flutter + Dart
● Implemented the backend with Rust, Rouille, Diesel, PostgreSQL, JSON, and Heroku
● Tested the app with users and iterated on the UI
● Coded some integration tests for tricky codepaths, including end-to-end tests
● Hired a designer to design the website, logo, color scheme, and app icon
● Coded the website in HTML, CSS, JavaScript, Bootstrap, Netlify: www.cozydate.com
● Researched monetization strategies, interviewed cafe owners as potential ad buyers

Google, Software Engineer, 2013-2018 (5yr 2mo)
= Assimilator Team, Technical Infrastructure, 2015-2018 =
Assimilator is an internal system that manages system software on Google's server machines. It
installs/updates/rolls-back the Linux kernel, firmware, OS software, machine certificates, and
Google system software. Assimilator daemon runs on every Google machine and router. Every
datacenter has its own controller instance. Its scheduling functions are extremely complicated
because they implement canaries and pipelined releases and comply with machine downtime
restrictions for Google Cloud users.

The project had accumulated a lot of technical debt and its maintainers had all left. I was the
first member of the new dev team. What I did:

● Refactored the C++ codebase to make it testable. Wrote unit tests. Wrote integration
tests for all features in use.

● Added features to unblock other teams
● Removed obsolete features
● Learned Golang and rewrote portions of the system in Golang. This was a multi-year

effort with my excellent teammates.
● Mentored a junior teammate
● Got promoted

= Machine Database Team, Technical Infrastructure, 2013-2015 =
Machine Database was the database of record for every piece of hardware costing more than
$5 in every Google data center. What I did:

● Helped teammates re-write API server in Java & gRPC
● Ported 100 C++ client programs from other teams to use the new API, and numerous

Java & Python clients
● Attention to detail: While porting one client, I identified a bug in how it used our API. The

bug would have caused a major outage affecting public apps. I submitted a PR. The
other team enthusiastically accepted it and told our Director who gave me a bonus.

https://www.cozydate.com/


● Set up continuous integration tests for schema migrations with API deployments and
rollbacks. This saved us a lot of trouble and increased our velocity in changing the
database.

● Added features to support new kinds of hardware and new datacenter management
software

● Removed obsolete columns, tables, and API features

Rest Backup, Founder, 2011-2012 (2yr)
● Created a REST API for storing application data backup files
● Built a web app for downloading files and for managing backup accounts
● Built the server with Java, EC2, S3, DynamoDB, ELB, SQS, and SES, and CloudFront
● Wrote API tests in Python and browser tests in Java and Selenium.
● Created backup software for MS SQL Server, MS Access and other file-based

databases. Python. Inno Setup installer (Pascal). Automated tests on 12 flavors of
Windows.

● Sales & support

Amazon Web Services, Software Dev. Engineer, 2007-2010 (2yr 8mo)
SimpleDB is a hosted NoSQL database service. It is the predecessor of Amazon DynamoDB.
What I did:

● Owned the subsystem that gathers and reports customer usage for billing purposes.
Wrote, tested, and deployed new versions to keep up with SimpleDB architecture
changes. Set up the subsystem for new SimpleDB instances in Northern California,
Ireland, and Singapore data centers.

● Wrote and maintained operations documentation
● Wrote functional tests for new API features, increased test coverage, added regression

tests
● Wrote and maintained the network partition test that stresses the distributed architecture

of SimpleDB. With this test, we made SimpleDB tolerate all kinds of network and server
problems

● Developed and maintained the team's operations tools
● Wrote and maintained command-line tools, web-based tools, monitors, alarms,

automated processes, documentation, and procedures
● Oncall

Education
Bachelor of Science in Computer Science, University of Illinois at Chicago, 2006
National Taiwan Normal University, Mandarin Training Center, Taipei, 2010 – 2011.
Architecting on AWS 3-day course, 2023-04.

Native English proficiency. U.S. citizen.


